

General Description

The MAX3314 is a ±5V powered EIA/TIA-232-compatible interface. It has one transmitter and one receiver in a flow-through architecture. The transmitter has a lowdropout output stage providing minimum RS-232-compatible $\pm 3.7 \text{V}$ output levels while driving $3 \text{k} \Omega$ and 1000pf at 460kbps. Both +5V and -5V are supplied externally.

The MAX3314 has a SHDN function that reduces supply current to 1µA. The transmitter is disabled and put into 3-state mode while the receiver remains active.

The MAX3314 is available in 8-pin SOT23, µMAX and SO packages.

Features

- ♦ 1µA Low-Power Shutdown with Receiver Active
- ♦ 30µA Operating Supply Current
- ♦ 460kbps (min) Data Rate
- ♦ 8-Pin SOT23 Package
- ♦ RS-232-Compatible Levels

Ordering Information

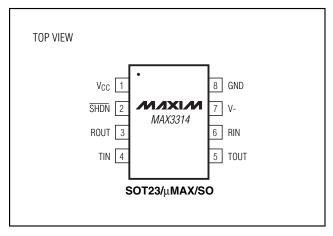
PART	TEMP. RANGE	PIN-PACKAGE
MAX3314CKA	0°C to +70°C	8 SOT23
MAX3314CUA	0°C to +70°C	8 μMAX
MAX3314CSA	0°C to +70°C	8 SO
MAX3314EKA	-40°C to +85°C	8 SOT23
MAX3314EUA	-40°C to +85°C	8 μMAX
MAX3314ESA	-40°C to +85°C	8 SO

Applications

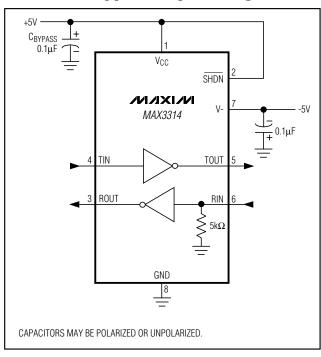
Digital Cameras

PDA

GPS


POS

Telecommunications


Handy Terminals

Set-Top Boxes

Pin Configuration

Typical Operating Circuit

MIXIM

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

V _{CC} to GND	0.3V to +6V	Continuous Power Dissipation
V- to GND	+0.3V to -6V	8-Pin SOT23 (derate 9.7mW/°C above +70°C)777mW
Input Voltages		8-Pin µMAX (derate 4.1mW/°C above +70°C)300mW
	0.3V to +6V	8-Pin SO (derate 5.88mW/°C above +70°C)471mW
RIN to GND	±25V	Operating Temperature Ranges
Output Voltages		MAX3314C_A0°C to +70°C
TOUT to GND	±13.2V	MAX3314E_A40°C to +85°C
ROUT	0.3V to (V _{CC} + 0.3V)	Junction Temperature+150°C
Short-Circuit Duration		Storage Temperature Range65°C to +150°C
TOUT to GND	Continuous	Lead Temperature (soldering, 10s)+300°C

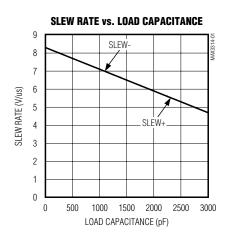
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

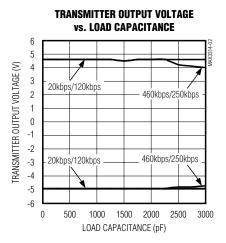
ELECTRICAL CHARACTERISTICS

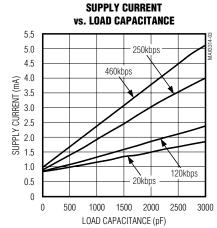
 $(V_{CC} = +5V, V_{-} = -5V, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DC CHARACTERISTICS			•			
Positive Supply Operating Range	Vcc		4.75	5	5.25	V
Negative Supply Operating Range	V-		-4.75	-5	-5.25	V
Positive Supply Current		SHDN = V _{CC} , no load		30	100	μΑ
Negative Supply Current		SHDN = V _{CC} , no load		15	30	μΑ
Shutdown Supply Current		SHDN = GND		1	10	μΑ
LOGIC INPUTS (TIN, SHDN)						
Input Logic Threshold Low	VIL		0.8			V
Input Logic Threshold High	VIH				2.4	V
Transmitter Input Hysteresis				0.5		V
Input Leakage Current				±0.01		μΑ
RECEIVER OUTPUT						
Output Voltage Low	V _{OL}	I _{OUT} = 1.6mA			0.4	V
Output Voltage High	VoH	I _{OUT} = -1.0mA	V _{CC} - 0.3	V _{CC} - 0.1		V
RECEIVER INPUT	•		•			•
Input Threshold Low	VIL		0.8			V
Input Threshold High	VIH				2.4	V
Input Hysteresis				0.5		V
Input Resistance				5		kΩ
TRANSMITTER OUTPUT						
Output Voltage Swing		Transmitter output loaded with $3\text{k}\Omega$ to ground	±3.7			V
Output Resistance (Note 1)		V _{CC} = V- = 0, transmitter output = ±2V	300			Ω
Output Short-Circuit Current					±60	mA
Output Leakage Current		V _{OUT} = ±12V, transmitter disabled			25	μΑ

Note 1: Not tested—guaranteed by design.


TIMING CHARACTERISTICS


 $(V_{CC} = +5V, V_{-} = -5V, T_{A} = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_{A} = +25^{\circ}C.)$


PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Maximum Data Rate		$R_L = 3k\Omega$, $C_L = 1000pf$, transmitter switching	460			kbps	
Describes Describes Delay	[†] PLH	Receiver input to receiver output, C _L = 150pF		0.15			
Receiver Propagation Delay	[†] PHL	Receiver input to receiver output, C _L = 150pF	0.15		μs		
Transmitter Skew				100		ns	
Receiver Skew				50		ns	
Transition Region Slew Rate		R_L = 3k Ω to 7k Ω , C_L = 150pF to 1000pF, measured from +3V to -3V or from -3V to +3V		8		V/µs	

Typical Operating Characteristics

 $(V_{CC} = +5V, V_{-} = -5V, 250 \text{kbps}$ data rate, transmitter loaded with $3k\Omega$ and C_L , $T_A = +25^{\circ}C$, unless otherwise noted.)

Pin Description

PIN	NAME	FUNCTION	
1	Vcc	.5% External Power Supply. Decouple with a 0.1μF capacitor to ground.	
2	SHDN	Shutdown Active Low. 0 = OFF, 1 = ON.	
3	ROUT	TTL/CMOS Receiver Output	
4	TIN	TTL/CMOS Transmitter Input	
5	TOUT	RS-232-Compatible Transmitter Output	
6	RIN	RS-232-Compatible Receiver Input	
7	V-	±5% External Power Supply. Decouple with a 0.1μF capacitor to ground.	
8	GND	Ground	

Detailed Description

RS-232-Compatible Drivers

The transmitter is an inverting level translator that converts CMOS-logic levels to EIA/TIA-232-compatible levels. It guarantees data rates up to 460kbps with worst-case loads of $3k\Omega$ in parallel with 1000pF. When \overline{SHDN} is driven low, the transmitter is disabled and put into 3-state mode. The transmitter input does not have a pull-up resistor. Connect to ground if unused.

RS-232-Compatible Receivers

The MAX3314's receiver converts RS-232 signals to CMOS-logic output levels. The receiver is rated to signals up to ± 25 V. The MAX3314's receiver will remain active during shutdown mode.

MAX3314 Shutdown Mode

In shutdown mode, the transmitter output is put into high impedance. This reduces the supply current to 1µA. The time required to exit shutdown is less than 2.5µs. Table 1 is the shutdown logic truth table.

Table 1. Shutdown Logic Truth Table

SHDN	TRANSMITTER OUTPUT	RECEIVER OUTPUT
L	High-Z	Active
Н	Active	Active

_Applications Information

Capacitor Selection

The capacitor type used is not critical for proper operation; either polarized or nonpolarized capacitors are acceptable. If polarized capacitors are used, connect polarity as shown in the *Typical Operating Circuit*.

Bypass VCC and V- to ground with at least $0.1\mu F$.

Transmitter Output When Exiting Shutdown

Figure 1 shows the transmitter output when exiting shutdown mode. The transmitter is loaded with $3k\Omega$ in parallel with 1000pF. The transmitter output displays no ringing or undesirable transients as the MAX3314 comes out of shutdown. Note that the transmitter is enabled only when the magnitude of V- exceeds approximately -3V.

High Data Rates

The MAX3314 maintains minimum RS-232-compatible ±3.7V transmitter output voltage even at high data rates.

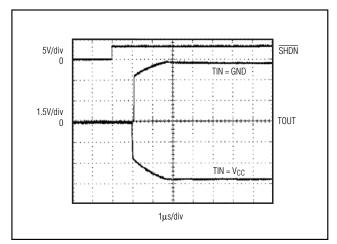


Figure 1. Transmitter Output When Exiting Shutdown or Powering Up

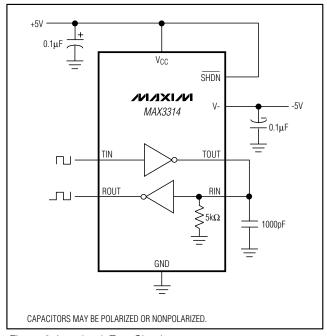


Figure 2. Loopback Test Circuit

Figure 2 shows a transmitter loopback test circuit. Figure 3 shows the loopback test result at 120kbps, and Figure 4 shows the same test at 250kbps.

Chip Information

TRANSISTOR COUNT: 128

MAX3314

460kbps, 1µA, RS-232-Compatible Transceiver

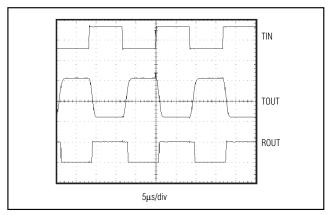
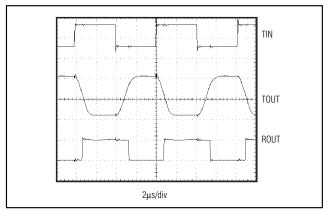
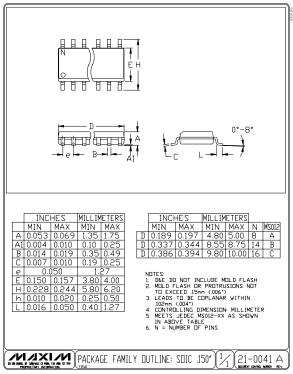
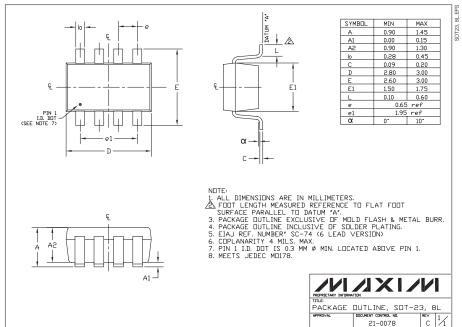


Figure 3. Loopback Test Results at 120kbps


Figure 4. Loopback Test Results at 250kbps

Package Information

Package Information (continued)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

6 ______Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600